Thermo-Diffusion Effect on Free Convection Heat and Mass Transfer in a Thermally Linearly Stratified Non-Darcy Porous Media

نویسندگان

  • P.V.S.N. Murthy
  • M. F. El-Amin
چکیده

Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ε. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

Analytical Investigation of Forced Convection in Thermally Developed Region of a Channel Partially Filled with an Asymmetric Porous Material- LTNE Model

In present work forced convection flow in a channel partly filled with a porous media under asymmetric heat flux boundary condition has been investigated. The porous material is distributed on the one wall. Darcy–Brinkman and LTNE model have been assumed in order to solve momentum and energy equations, respectively. Fully developed conditions are considered in order to solve velocity and the te...

متن کامل

Slip flow in porous micro-tubes under local thermal non-equilibrium conditions

In the present work, forced convection heat transfer of slip flow in porous micro-tubes with local thermal non-equilibrium between the gas and the solid matrix is investigated numerically. For this purpose, the flow is considered hydrodynamically developed but thermally developing. The Darcy-Brinkman-Forchheimer model in conjunction with separate energy equations for the gas and the solid matri...

متن کامل

Effect of Melting and Thermo-Diffusion on Natural Convection Heat Mass Transfer in a Non-Newtonian Fluid Saturated Non-Darcy Porous Medium

This paper investigates the influence of melting and thermo-diffusion effect on natural convection heat and mass transfer from vertical flat plate in a non-Newtonian fluid saturated non-Darcy porous medium. The wall and the ambient medium are maintained at constant but different levels of temperature and concentration such that the heat and mass transfer occurs from the wall to the medium. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011